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Abstract

Electrical stimulation is proposed to exert an antimicrobial effect according to studies per-

formed using bacterial and cell cultures. Therefore, we investigated the effects of electrifica-

tion on inflammation in septic rats. Twenty-eight male Wistar albino rats were divided into 4

groups: healthy control (C), electrified healthy (E), sepsis (S), and electrified sepsis (SE)

groups. Staphylococcus aureus (1 x 109 colonies) in 1 ml of medium was intraperitoneally

injected into rats to produce a sepsis model. The rats in the E and SE groups were exposed

to a low direct electrical signal (300 Hz and 2.5 volts) for 40 min and 1 and 6 h after bacterial

infection. Immediately after the second electrical signal application, blood and tissue sam-

ples of the heart, lung, and liver were collected. An antibacterial effect of a low direct electri-

cal signal was observed in the blood of rats. The effects of electrical signals on ameliorating

changes in the histological structure of tissues, blood pH, gases, viscosity and cell count,

activities of some important enzymes, oxidative stress parameters, inflammation and tissue

apoptosis were observed in the SE group compared to the S group. Low direct electrical sig-

nal application exerts antibacterial, antioxidant, anti-inflammatory and antiapoptotic effects

on septic rats due to the induction of electrolysis in body fluids without producing any tissue

damage.

Introduction

Inflammation is a complex biological process that protects against harmful stimuli and affects

many organs, and it has a role in disease progression unless it is properly controlled. The acute

inflammatory response is critical in host defense, but, if not treated, can lead to chronic inflam-

mation associated with many human diseases. Sepsis is one of these conditions because it is a

form of widespread inflammation in the body. Sepsis is defined as an unusual pattern of

response by the immune system to injury or bacterial infection.
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During the early phase of sepsis, receptors such as Toll-like receptors on the surface of mac-

rophages recognize molecules related to the pathogen; then, proinflammatory cytokines, such

as tumor necrosis factor (TNF), interleukin-1β (IL-1β) and IL6, are secreted from macro-

phages to induce systemic inflammation. In addition to these proinflammatory cytokines,

upregulation of the levels of C-reactive protein (CRP) and procalcitonin (PCT) are other bio-

markers of sepsis. During the progression of sepsis, widespread organ dysfunction (lung, liver,

kidney, and brain) is initiated, which is called severe sepsis. Finally, septic shock occurs due to

cardiovascular disruptions [1]. In addition, sepsis-dependent organ dysfunction exacerbates

reactive oxygen species (ROS) production because oxidative stress is one of the factors that

stimulates proinflammatory cytokine secretion [2]. Therefore, new therapeutic approaches are

urgently needed for diseases in which the inflammatory response contributes to progressive

loss of organ function [3].

In recent years, drug-free treatment for diseases has begun to be preferred because it has

fewer side effects. For instance, physical interventions, such as electrical or magnetic stimula-

tion, with varying parameters produce positive results for acute or chronic nerve injuries. The

biological basis of electrical or magnetic stimulation is mainly based on alterations in protein

synthesis, ion channel regulation, and growth factor secretion [4]. Due to these properties, an

electric current is also used in medicine for pain relief (TENS), a reduction in inflammation,

and wound healing [5].

Electrification is a technique that has the potential to destroy pathogens, viruses, bacteria,

parasites, germs and fungi that disrupt our health by impairing our immune system [6, 7]. Pre-

viously, the antimicrobial effects of electrification on water, milk, and bacterial and cell cultures

were documented in vitro [8, 9]. In addition, most acquired immunodeficiency syndrome

(AIDS) viruses lose their infectious abilities after exposure to a very low electrical current in
vitro [10]. When the blood is repeatedly exposed to electric current, AIDS and hepatitis viruses

are almost undetectable, without damaging the blood cells. Subsequently, the same effect was

achieved in humans by placing the electrodes on the blood vessel paths and exposing them to a

very low electric current [11]. Although such a protocol was developed, interestingly, no in vivo
study has been conducted on electrical stimulation to date, except for wound healing. In these

wound healing studies, bacterial inhibition was detected in infected wounds in humans follow-

ing electrical stimulation [12–14]. Although electrical stimulation directly or indirectly pro-

duces its antibacterial effect on infected wounds, its exact mechanism is still not fully

understood. The direct effect may occur because the electric current disrupts the integrity of the

bacterial membrane or induces the electrolysis of molecules on the bacterial cell surface, which

is the most likely cause of the antibacterial effects of electrical stimulation [15, 16]. Temperature

and pH changes may also be indirect effects of electrical stimulation [17, 18]. However, these

changes may not be the primary cause of the antibacterial effects of electrical stimulation [14].

Therefore, the current study was designed to investigate the in vivo effects of a low direct electri-

cal signal on the inflammatory response, blood bacterial count, pH, gases, viscosity, cell count,

some biochemical parameters, oxidative stress and tissue damage in a rat bacterial sepsis model.

Materials and methods

Preparation of the bacterial suspension

A commercially available Staphylococcus aureus standard strain (ATCC-10390, USA) was used

in the study. Before the bacterial injection, passages were taken from the lyophilized strains

stored at -20˚C, and an incubation was carried out at appropriate times. Identification was per-

formed at certain time intervals using the VITEK 2 Compact 30 automatic micro identification

system and VITEK MS mass spectrophotometer (bioMérieux, Lyon, France) to ensure that no
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contamination or structural change occurred in standard strains. As a result of the identifica-

tion, the strains showed similarity at a rate of 99.9%. In addition, only bacteria obtained from

the first passages were always used to prevent the standard strain from mutating and losing its

pathogenicity. Standard S. aureus strains were in the logarithmic phase of growth during the

experiment. Therefore, passages were taken 18–24 hours before injection and incubated at 37˚C

during this period. After incubation, the appropriate density of the bacterial suspension (1x109

CFU/ml) was prepared using the DensiCHEK plus (bioMérieux, Lyon, France) device accord-

ing to the McFarland turbidity system. Sterile ACILA1LAL Reagent Water (LRW, Opelstrassee

14, Mörfelden-Walldorf, Germany) was used to prepare the suspensions. The prepared suspen-

sions were drawn into 1 ml injectors under sterile conditions and were ready for administration.

At the end of the experiment, microbiological examinations were performed using the culture

method in blood samples to determine the reliability of our sepsis model.

Determination of culturable bacteria

Blood samples (100 μl) collected 1 and 6 hours after bacterial injection were pre-enriched for 3

hours in 10 ml commercial TSB tubes (BD, BBL Trypticase Soy Broth, Franklin Lakes, New

Jersey, USA). At the end of 3 hours, 100 μl of the solution was pipetted onto the center of the

surface of three different Mannitol Salt Agar plates (Merck-Millipore, Darmstadt, Germany)

using the spread plate method. The plates were incubated at 37˚C for 72 hours. At the end of

this period, colony forming units in plates were counted, and the mean results were used for

statistical analysis.

Device used to apply the electric current

This newly developed low electrical signal application device (Dr. Biolyse) is an electron accel-

erator that can be used to decompose chemicals in body fluids (Turkish Patent Institute patent

application numbers: 2021/006002, 2020/08818, 2020/14753, and 2020/14781). The principle

of the device is that molecules decompose with the energy provided by the electrical signal,

and new molecules are formed from the electrons supplied to the environment. In body fluids,

3 types of compounds have been identified whose molecular bonds are close to each other and

thus could be easily decomposed and merged due to excitation: water (H2O), sodium chloride

(NaCl) and potassium chloride (KCl). Therefore, before this experiment, we postulated that

the necessary decomposition of these compounds and the formation of new compounds from

the chemicals mentioned above in body fluids might be achieved by energy and electron trans-

fer induced by low direct electrical signal exposure (electrolysis) without increasing the body

temperature. We tested this hypothesis by applying a low direct electrical signal to the isotonic

saline solution in vitro and thus increased the orbital velocity of electrons commonly used in

covalent bonds to facilitate separation by resonating the average spin speed of the electron

according to the speed at which it will break from the orbit. Using this method, highly efficient

separation was achieved by applying a low direct electrical signal at a frequency of 300 Hz for

the electron to reach a speed of 300.000 km/sec, which was the approximate speed of electrons

after dissociation. Thus, H2O dissociated into hydrogen (H) and hydroxyl (OH) ions, NaCl

dissociated into sodium (Na) and chloride (Cl) ions. As we continued the reaction, sodium

hydroxide (NaOH), H and Cl were formed in the medium. After the formation of NaOH

reached a certain level, instant hypochlorous acid (HOCl, a weak acid) formation occurred.

Based on these results, the system rapidly balanced within certain periods. The equilibration

reaction was NaOH + HOCl! NaCl + H2O + O.

In this study, two pairs of carbon electrodes were placed on the lung and back and the abdo-

men and back to measure the resistance produced by the rat bodies exposed to the electrical
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signal. When the body resistance of rats was measured by applying a standard direct electrical

signal, it ranged from 135.000–150.000 Ohms. Continuous application of this direct electrical

signal would cause tissue damage over time due to the load it would create on the cells. How-

ever, when measured with the Dr. Biolyse device, which has a square-wave frequency featuring

a direct electrical signal, the body resistance at a frequency of 300 Hz was in the range of

2.700–3.300 Ohms. This frequency of 300 Hz was selected according to our preliminary in
vitro experiment, as the molecular separation occurred at the fastest level by providing the

most efficient resonance on H2O, NaCl and KCl. With this frequency adjustment, the contact

of the electrical signal with tissues was minimized, and the current applied to the body fluids

was increased. Therefore, the electrical signal reached the target fluid environment over the

body tissues with little resistance. The device limits itself by software (Fig 1).

Fig 1. The Dr. Biolyse. Rats were exposed to a low electrical signal using the newly developed Dr. Biolyse device.

https://doi.org/10.1371/journal.pone.0257177.g001
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Animals and induction of sepsis

Based on the result of the power analysis (an average difference of 10 units and a standard

deviation of 5 units at 80% power and 95% confidence level), a minimum of 7 rats was neces-

sary for each group. Therefore, 28 male Wistar albino rats, weighing between 250–300 g, were

used in this study. The rats were obtained from the Bezmialem Vakif University Experimental

Animal Centre and housed under standard temperature (25 ± 1˚C), humidity (50–60%), and

dark-light conditions (12 h light/12 h dark cycle) and fed ad libitum.

This study was carried out in strict accordance with the recommendations in the Guide for

the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol and

approved by the Bezmialem Vakif University Experimental Animals Ethical Committee (Date:

28.09.2020, No: 2020/145). All surgeries were performed under ketamine and xylazine anes-

thesia, and all efforts were made to minimize suffering.

The rats were divided into 4 groups: healthy control (C), electrified healthy (E), sepsis (S),

and electrified sepsis (SE) groups. Before the experiment, the abdominal and back areas of the

rats were shaved with an electric razor for electrode placement. Staphylococcus aureus (1 x 109

CFU) in 1 ml of LRW was administered (i.p.) to the animals to induce sepsis in the S and SE

groups. The C and E groups were injected with 1 ml of LRW instead of Staphylococcus aureus
medium [19]. Sepsis formation was confirmed by bacterial cultivation of 100 μl of blood taken

from the jugular vein of the rats anesthetized with isoflurane 1 h after the bacteria or LRW

injections (Fig 2).

Positive electrodes were placed on the chest and abdomen, and negative electrodes were

placed on the back sides of chest and abdomen of rats to apply the low direct electrical signal

(300 Hz and 2.5 volts) such that the electrical signal passed through the body for the electroly-

sis of the body fluids. The electrodes were fixed on the back and abdomen of the rats with a

plaster that was completely wrapped around the body (Fig 1). The electrical signal was applied

to rats in the E and SE groups for 40 min and 1 and 6 h after the bacterial injection. The elec-

trodes were placed on the same areas of the rats in the C and S groups for 40 min without

applying any electrical signal. At the end of this period, the rats were anesthetized with keta-

mine–xylazine (K, 100 mg/kg; X, 10 mg/kg, intraperitoneally), and cardiac blood samples were

collected when animals were in deep sleep. Then, while rats were still under anesthesia, they

were decapitated with a guillotine, and tissue samples were removed for further studies.

Histopathological examination

The obtained tissues were fixed with 10% buffered formaldehyde for light microscopy. Samples

stored in buffered formaldehyde were processed in a tissue processing machine under a fixed

vacuum (Leica TP 1020, Germany). Tissues were embedded in paraffin wax. Three- to five-

micrometer-thick paraffin sections were cut and then stained with hematoxylin–eosin for the

histopathological examination. Each section was evaluated independently by two histologists

who were blinded to the groups using the X10, X20 and X40 objectives. The images were cap-

tured using a Nikon digital camera (Eclipse 920248, USA).

Whole blood measurements

The whole blood cell count was measured using a hematology analyzer (Abacus junior vet,

Budapest, Hungary). The blood gases and pH were measured using a blood gas analyzer

(ABL90 FLEX, Bronshoj, Denmark). Whole blood viscosity and shear stress were measured at

a shear rate of 1,500 s-1 using a Wells-Brookfield cone-plate viscometer (DV3TLVCJ0, USA).

All viscosity measurements were performed at 37˚C.
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Biochemical analysis

Samples handling. Blood samples were centrifuged for 10 min at 3,000 x g to obtain the

serum supernatant. The serum and tissue samples were stored at -80˚C until the day of the

experiment. The tissue samples were homogenized in PBS (phosphate-buffered saline, pH:

7.4) using a homogenizer (Fast prep-24, MP Biomedical, USA).

Analysis. Cholesterol, aspartate aminotransferase (AST), alanine aminotransferase (ALT),

lipase and total protein (TP) levels in serum samples were measured with a semiautomatic bio-

chemical analyzer (IDEXX Vettest, IDEXX Laboratories, Inc., USA). Detection ranges for the

ALT, AST, lipase, cholesterol, and TP kits were 20–161 U/L, 39–111 U/L, 10–150 U/L, 20–92

mg/dl, and 5.3–6.9 g/dl, respectively.

Analysis of oxidative stress parameters

Measurements of superoxide dismutase (SOD), malondialdehyde (MDA) and reduced

glutathione (GSH) levels. SOD, MDA and GSH levels were measured with commercially

available ELISA-based kits (for SOD, Elabscience Co., USA; for MDA, Mybiosource Co., USA;

Fig 2. The number of bacteria measured during experiments. Bacterial counts of the healthy control (C) electrified

healthy (E), sepsis (S) and electrified sepsis (SE) groups (n = 7). ���; p<0.001 statistically significant difference

compared to the S group.

https://doi.org/10.1371/journal.pone.0257177.g002
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for GSH Elabscience Co., USA). Briefly, the standards and samples were pipetted into micro-

plates coated with a monoclonal antibody and incubated. Biotin was added to all wells, and

streptavidin-HRP was added to induce binding. After incubation, 4 washes were performed to

remove unbound reagents. After adding chromogen solutions A and B, stop solution was

added, and the resulting optical density was measured at 450 nm using a plate reader (Thermo

Scientific, Varioskan™ LUX multimode microplate reader, USA). The detection range of the

kits was between 0.16–10 ng/ml for SOD, 0–1000 ng/ml for MDA and 2–400 μmol/l for GSH.

Measurements of the total antioxidant status (TAS) and total oxidant status (TOS) lev-

els. The TAS levels in the blood and tissue samples were measured using a commercial kit

(Rel Assay Diagnostics, Turkey) with a spectrophotometric method (Thermo Scientific, Var-

ioskan™ LUX multimode microplate reader, USA). Briefly, the antioxidants in the samples

reduced the dark blue green 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammo-

nium salt (ABTS) radical to the colorless reduced form of ABTS. The change in absorbance at

660 nm was related to the total antioxidant level of the sample. Total antioxidant activities

were reported as mmol Trolox equiv/L of the samples.

The TOS levels in the samples were measured using a commercial kit (Assay Rel Diagnos-

tics, Turkey) and spectrophotometer (Thermo Scientific, Varioskan™ LUX multimode micro-

plate reader, USA). Briefly, oxidants present in the samples oxidized the ferrous ion chelator

complex to iron ions. While the oxidation reaction was prolonged by enhancer molecules

abundant in the reaction medium, the ferric ion formed a color complex with chromogen in

an acidic environment. The intensity of color formed was related to the total amount of oxi-

dant molecules present in the samples. The results are reported as μm H2O2 equivalent/L.

Measurement of inflammation parameters using multiplex ELISA

The inflammation parameters in serum samples were measured with a commercially obtained

inflammation panel (Bio–Rad, Bioplex Rat cytokine plex assay, USA). The panel contains 30

parameters. The test was set up according to the manufacturer’s recommendations. Briefly,

samples were mixed with antibody-bound magnetic beads in a 96-well plate and incubated

overnight at 4˚C with shaking. The cold and room temperature incubation steps were carried

out on an orbital shaker at 500–600 x rpm. The microplate was washed twice with wash buffer.

After a 1 h incubation at room temperature with the biotinylated detection antibody, streptavi-

din was added. The plate was washed, and PBS was added with a lower limit of 50 beads per

sample. Reading was performed on a Bio-Plex 200 instrument (Bio–Rad, USA).

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE)

and western blot analysis

After thawing, the tissues (approximately 100 mg) were cut into pieces and homogenized in

500 μl of cold RIPA buffer (Santa Cruz Biotechnology, Dallas, Texas, USA) containing a prote-

ase inhibitor cocktail using a bead homogenizer for 10 min at a speed of 30/s. The homogenate

was centrifuged at 700 × g for 15 min at 4˚C to remove debris and nuclei, the supernatant was

collected in a 1.5 ml tube, and groups were pooled. Samples were stored at -80˚C until further

experiments.

Supernatants of tissues were denatured and separated on a 12% sodium dodecyl sulfate-

polyacrylamide gel. Proteins (20 μg) were transferred to a polyvinyl difluoride membrane

(Bio–Rad, Hercules, CA, USA). The membrane was blocked with 5% nonfat dry milk (Bio–

Rad, Hercules, CA, USA) in Tris (hydroxymethyl) aminomethane (Tris)-buffered saline con-

taining 0.1% Tween 20 (TBST) for 1 h. The membrane was then immunoblotted with primary

antibodies (IL-1β, TNF-α, Bax, Bcl-2, tubulin, and β-actin (Cell Signaling, Danvers,
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Massachusetts, USA)) overnight at 4˚C. After three washes with the TBST solution, mem-

branes were incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies

(goat anti-rabbit immunoglobulin G (IgG) HRP and goat anti-mouse IgG HRP (Cell Signaling,

Danvers, Massachusetts, USA)) for 1 h at room temperature. Western blots were developed by

a peroxidase reaction with ECL reagents (Elabscience, Houston, Texas, USA) and images were

captured with a Fusion FX7 system (Vilber Lourmat, France). The band intensity was quanti-

fied using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

Statistical analysis

Group means ± standard deviations (SD) were calculated from all values. The Shapiro–Wilk

test was used to test the normality of the data. Data with a normal distribution were analyzed

with one-way ANOVA, and the data with a nonnormal distribution were analyzed with the

Kruskal–Wallis test. Post hoc comparisons between the groups were performed with Bonfer-

roni and Dunn tests using GraphPad Prism software (GraphPad Prism version 6 Software Pro-

gram San Diego, CA). A value of P<0.05 was considered statistically significant.

Results

Number of culturable bacteria in blood

One hour after the LRW or Staphylococcus aureus injection, just before the electrical signal

application, no bacterial growth was observed in the blood of the C and E groups, while there

was dense bacterial growth was detected in the blood of the S and SE groups, which indicated

bacteremia in these two groups. The 40-minute electrical signal application performed at 1

and 6 hours after the bacterial injection significantly (P<0.001) reduced bacteremia in the SE

group compared to the S group (Fig 2). Slight bacteremia was still observed in the SE group.

Tissue histology

Histological results from the groups are shown in Fig 3. While inflammation was observed in

the myocardium of the S group, no inflammation was observed in the myocardium of the SE

group. Except for the S group, all groups had normal histological structures. Myocardial fiber

bundles were loosely arranged, and some myocardial fibers were necrotic in the S group.

An examination of lung sections revealed that neither the C nor the E groups showed pul-

monary histological alterations. Inflammatory cell infiltration was observed in the S group.

Inflammation was also detected in the SE group, but it was much less than that of the S group.

In addition, congestion was greater in the SE group than in all other groups.

Regarding liver tissues, no increase in inflammatory cell infiltration was observed in any

group. Except for the S group, all groups had normal histological structures. However, sinu-

soids were slightly larger in all groups due to fixation. Areas of necrosis were observed in the

tissues from the S group.

Changes in blood parameters

Compared to the C group, the pH, oxygen saturation (sO2) and white blood cell (WBC) count

were significantly lower (p<0.05—p<0.001), and the partial carbondioxide (pCO2), red blood

cell (RBC) count, hemoglobin (HB) level, hematocrit percentage (HCT %), blood viscosity and

shear stress levels were significantly higher (p<0.05—p<0.001) in the S group. However, none

of the changes that occurred in the S group were observed in the SE group (Figs 4–7). Signifi-

cant difference (p>0.05) among groups were not observed in platelet (PLT) counts, monocyte

percentage or pO2. In addition, the lymphocyte percentage was significantly increased
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(p<0.05), and the granulocyte percentage and the RBC count were significantly decreased

(p<0.01 and p<0.05, respectively) in the E group compared to the C group.

Biochemical blood measurements

Compared to the C group, the serum levels of ALT and AST and lipase activity were signifi-

cantly higher (p<0.01, p<0.01 and p<0.001, respectively), and the TP level was significantly

lower (p<0.01) in the S group. However, none of the changes that occurred in the S group

were observed in the SE group (Table 1).

Oxidative stress analysis

Compared to the C group, the blood and tissue levels of TOS and MDA were significantly

higher (p<0.001), and TAS and GSH levels and SOD activity were significantly lower

(p<0.001) in the S group. However, none of the changes that occurred in the S group were

observed in the SE group (Table 1).

Analysis of cytokine levels in the blood

The serum inflammation markers are shown in Table 2. The levels of all examined interleukins

(ILs) and macrophage inflammatory proteins (MIPs), except for IL-5, IL-13 and MIP-3α, were

significantly increased (p<0.05 –p<0.001) in the S group compared to the C group. In addi-

tion, granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating

Fig 3. Histological results obtained after the Dr. Biolyse treatment. Images of hematoxylin & eosin staining in sections from the healthy control (C), electrified healthy

(E), sepsis (S) and electrified sepsis (SE) groups at X400 magnification. Insets show the lung tissues of the S and SE groups at low magnification. Here, inflammation was

greater in the S group than in the SE group (HE X10). Stars in insets in the pictures of the liver section from S group show the necrotic liver tissue (HE X10).

https://doi.org/10.1371/journal.pone.0257177.g003
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factor (M-CSF) levels were significantly lower (p<0.05 and p<0.001, respectively), and granu-

locyte-macrophage colony-stimulating factor (GM-CSF), growth-regulated oncogenes (GRO)/

keratinocyte chemoattractant (KC), interferon gamma (IFNγ), monocyte chemoattractant

protein 1 (MCP1) and chemokine ligand (CCL5 or RANTES) levels were significantly higher

(p<0.001) in the S group than in the C group. However, all these parameters that changed in

the S group, except for IL-1α, were unchanged in the SE group. The level was still higher

(p<0.05) in the SE group than in the C group.

Western blotting

Changes in the levels of the inflammatory cytokines IL-1β and TNF-α in the liver, heart and

lung tissues of rats are shown in Figs 8 and 9. In all examined tissues, the expression of these

cytokines was upregulated (p<0.05 –p<0.001) in the S group compared to the C group. The

electrical signal treatment significantly decreased (p<0.05 –p<0.01) the levels of both IL-1β
and TNF-α in the SE group compared to the S group. In addition, electrical signal treatment of

healthy rats did not induce any change in the expression of these inflammatory cytokines in

the liver, heart, or lung tissues.

Fig 4. The blood parameters measured after the Dr. Biolyse treatment. The blood pH and gases of the healthy control (C) electrified healthy (E), sepsis

(S) and electrified sepsis (SE) groups (n = 7). pH (A), pO2 (B), pCO2 (C) and sO2 (D) are presented as the means ± SD. �; p<0.05, ���; p<0.001 statistically

significant difference compared to the C group. +++; p<0.001 statistically significant difference compared to the S group.

https://doi.org/10.1371/journal.pone.0257177.g004
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Due to the relationship between the increased levels of proinflammatory cytokines and apo-

ptosis during the process of sepsis, the ratio of Bax (a proapoptotic member of the Bcl-2 family)

to Bcl-2 (an antiapoptotic member of the Bcl-2 family) expression was analyzed as a marker

for the rate of apoptosis (Fig 10). In the liver and heart tissues, the Bax/Bcl-2 ratio was signifi-

cantly higher (p<0.05) in the S group than in the C group, indicating an increase in apoptosis.

However, the Bax/Bcl-2 ratios in the lung tissues from the S group were not changed compared

to the C group. The electrical signal treatment significantly decreased (p<0.05 –p<0.01) the

apoptosis rate in the liver, heart and lung tissue of the SE group compared to the S group. In

addition, electrical signal treatment of the healthy rats did not produce any alteration in apo-

ptosis in the examined tissues compared to the C group.

Fig 5. The white blood cell count. The blood leukocyte counts of the healthy control (C) electrified healthy (E), sepsis (S) and electrified sepsis (SE)

groups (n = 7). WBC (A), white blood cells; LY% (B), lymphocyte %; MONO% (C), monocyte %; GR% (D), granulocyte %. Data are presented as the

means ± SD. �; p<0.05, ��; p<0.01 statistically significant difference compared to the C group. +; p<0.05, ++; p<0.01 statistically significant

difference compared to the S group.

https://doi.org/10.1371/journal.pone.0257177.g005
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Discussion

The antibacterial effect of a low direct electrical signal on experimentally induced septic rats in
vivo was first described in our study. We proposed that the antibacterial effect of electrical

stimulation might be due primarily to disrupting the integrity of the bacterial membrane

through the electrolysis of molecules on the bacterial cell surface [15, 16] or secondarily to the

formation of HOCl due to the electrolysis of body fluids by a low electrical signal. When in

contact with microbes, HOCl selectively binds the unsaturated lipid layer of microorganisms

Fig 6. The blood hemogram parameters. The blood erythrocyte and thrombocyte counts and hemoglobin and hematocrit levels in the healthy

control (C), electrified healthy (E), sepsis (S) and electrified sepsis (SE) groups (n = 7). RBC (A), red blood cell; HB (B), hemoglobin; HCT (C),

hematocrit; and PLT (D), platelet. Data are presented as the mean ± SD. �; p<0.05, ���; p<0.001 statistical significance compared to the C

group. +; p<0.05, ++; p<0.01, +++; p<0.001 statistical significance compared to the S group.

https://doi.org/10.1371/journal.pone.0257177.g006
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and then disrupts their cell wall and thus the cellular integrity of microbes or viruses, causing

them to be destroyed [20]. In addition, HOCl is also produced by activated neutrophils in the

immune response to invading pathogens and immediately reacts with proteins mostly belong-

ing to the host [21, 22]. The exposure of human monocyte-derived macrophages to HOCl

increases the intracellular Ca2+ concentration, which might be the pathway by which leuko-

cytes form extracellular traps [23]. Similarly, the release of extracellular traps occurs when neu-

trophils are exposed to the Ca2+ ionophore ionomycin [23].

Histologically, the preservation of tissue integrity and the absence of necrosis showed that

low direct electrical signal application did not cause any damage to the rat tissues or organs.

Although inflammation was observed in the lung tissues from both the S and SE groups, it was

much less common in the SE group than in the S group. Thus, the rats were successfully

infected experimentally, but the application of the low direct electrical signal significantly

reduced the spread of infection in lung tissue.

In our study, the pH, sO2 and WBC count were lower, and the pCO2, RBC count, HB, HCT

%, blood viscosity and shear stress levels were higher in the S group than in the C group. Simi-

lar to our result, blood pH decreases in individuals with severe sepsis [24, 25]. The changes in

the pH and blood gas levels in the S group might be due to the association of sepsis with multi-

ple organ failure that might lead to respiratory and circulatory system failure and acute kidney

injury [26, 27].

Blood viscosity is a measure of the thickness of blood and is defined as the ratio between the

shear stress and shear rate. It may increase in individuals with acute inflammatory diseases

due to the increase in acute phase proteins [28]. HCT % may also alter the blood viscosity. In

our study, the increased blood viscosity observed in the septic rats compared to the controls

was probably due to the increased RBC count, HB level, and HCT %. In patients with sepsis,

respiratory (hypoventilation) and circulatory (hypoperfusion) failures may lead to tissue

Fig 7. The blood rheological parameters. The blood viscosity and shear stress levels of the healthy control (C) electrified healthy (E), sepsis (S) and electrified sepsis

(SE) groups (n = 7). Viscosity (A) and shear stress (B). Data are presented as the means ± SD. �; p<0.05, ��; p<0.01 statistically significant difference compared to the

C group. +++; p<0.001 statistically significant difference compared to the S group.

https://doi.org/10.1371/journal.pone.0257177.g007
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hypoxia [29]. Therefore, hypoxia-induced erythropoietin production might explain the

increased RBC count, HB value, and HCT % in the septic rats compared to the controls. The

WBC count decreased significantly in the S group compared to the C group. A decreased

WBC count may be associated with immune paralysis. It represents an important feature of

severe sepsis and causes an increased mortality rate [30]. However, none of the changes that

occurred in the S group were observed in the SE group. In addition, the low electrical signal

increased the lymphocyte percentage and decreased the granulocyte percentage and the RBC

count in the E group compared to the C group. Our experiment is the first to document this

effect of a low electrical signal on lymphocyte and monocyte percentages.

The serum levels of ALT and AST and lipase activity were higher, and the TP level was

lower in the S group than in the C group. Increased lipase activity is an indicator of pancreatitis

or septic shock [31], and increased levels of ALT and AST and decreased levels of TP are mark-

ers of liver damage [32]. The application of the low electrical signal prevented the occurrence

of all these changes in the SE group.

Previous studies have revealed that lung and kidney injuries occur [33, 34] due to excessive

production of reactive oxygen species (ROS), such as MDA, in tissues, neutrophil

Table 1. The serum ALT, AST, cholesterol and TP levels and lipase activity and the blood and tissue TAS, TOS, MDA and GSH levels and SOD activity.

Serum Groups

C E S SE

AST (U/L) 53.14±2.73 53.17±4.84++ 79.14±28.13�� 58±9.03+

ALT (U/L) 93.29±5.4 92.42±3.8+++ 186.7±94.65�� 98±15.19++

TP (g/dl) 5.8±0.5 5.817±0.16+++ 4.786±0.49�� 5.314±0.65

CHOLESTEROL (mg/dl) 51±3.05 52.25±5.11 35.71±20.66 44.86±20.36

LIPASE (U/L) 62.14±37.72 58.25±12.56+++ 1419±1123��� 60±37+++

TAS (mmol/L) 1.2±0.14 1.27±0.16+++ 0.88±0.09��� 1.25±0.13+++

TOS (μmol/L) 4.41±0.62 3.75±0.34+++ 8.51±1.99��� 4.5±0.71+++

SOD (ng/ml) 9.32±1.11 9.9±1.53+++ 4.94±0.73��� 9.13±1.29+++

MDA (ng/ml) 142±37.81 119.9±28.06+++ 784.4±143.2��� 200±53.01+++

GSH (μmol/L) 280.2±52.11 289.2±52.4+++ 72.54±18.67��� 281.6±49.57+++

Lung Groups

C E S SE

TAS (mmol/L) 1.21±0.09 1.26±0.09+++ 0.84±0.11��� 1.25±0.06+++

TOS (μmol/L) 4.39±0.61 3.71±0.33+++ 8.53±1.92��� 4.55±0.61+++

SOD (ng/ml) 10.36±1.59 11.68±1.03+++ 5.96±0.68��� 9.93±0.92+++

MDA (ng/ml) 224.8±77.97 209.9±49.10+++ 1146±350��� 372.6±67.84+++

GSH (μmol/L) 291.9±45.29 304.6±59.91+++ 98.67±16.71��� 282.8±16.62+++

Liver Groups

C E S SE

TAS (mmol/L) 1.27±0.09 1.3±0.09+++ 0.87±0.12��� 1.29±0.06+++

TOS (μmol/L) 4.54±0.63 3.83±0.34+++ 8.82±1.99��� 4.7±0.63+++

SOD (ng/ml) 10.66±0.85 12.28±1.34� +++ 5.98±0.69��� 9.22±1.05+++

MDA (ng/ml) 229.4±56.67 220.1±47.63+++ 1215±115.1��� 238.7±33.49+++

GSH (μmol/L) 310.3±69.59 341.6±69.66+++ 132.9±41.61��� 308.9±24.62+++

Data are presented as the means ± SD.

�; p<0.05

���; p<0.001 statistically significant difference compared to the C group.

+++; p<0.001 statistically significant difference compared to the S group (n = 7).

https://doi.org/10.1371/journal.pone.0257177.t001
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accumulation and an increase in proinflammatory cytokine production [35, 36] during sepsis.

ROS levels are maintained in balance because they are neutralized by the body’s antioxidant

defense systems, such as GSH and SOD [37]. If this balance is disrupted in favor of ROS,

destructive reactions occur in molecules such as proteins, lipids, and nucleic acids. This condi-

tion, called "oxidative stress", ultimately leads to tissue damage [38]. The blood and tissue levels

of TOS and MDA were higher, and the TAS and GSH levels and SOD activity were lower in

the S group than in the C group, indicating a disrupted oxidant/antioxidant balance in favor of

oxidants and thus oxidative stress, as observed in other inflammatory diseases, such as osteoar-

thritis and pulmonary fibrosis [39, 40]. However, the application of the low electrical signal

prevented the formation of oxidative stress in the SE group, indicating an antioxidant effect.

The levels of many ILs increase in individuals with sepsis [41–43]. Parallel to previous stud-

ies, the levels of all examined ILs, except IL-5 and IL-13, increased in the S group compared to

the C group in our study. A low level of IL-5 is associated with lung death and tissue damage,

and thus, IL-5 treatment may reduce the mortality associated with sepsis [44]. In a previous

study, IL-13 protected against sepsis-induced lethality by suppressing inflammatory responses

[45]. As shown in our study, the levels of all examined MIPs, except MIP-3α, increased in the S

group compared to the C group. In the literature, limited information is available about the

Table 2. The serum inflammation markers.

Inflammation Markers Groups

C E S SE

G-CSF (pg/ml) 2,51±0,57 4,06±1.17�� +++ 1,22±0.59� 2,79±0.62++

M-CSF (pg/ml) 19,97±4.68 18,7±5.02+++ 6,62±1.96��� 17,39±5.8++

GM-CSF (pg/ml) 7,49±2.97 8,07±2.79+++ 16,75±3.1��� 9,43±2.5+++

GRO/KC (pg/ml) 2,47±1.17 2,8±1.17+++ 5,08±1.04��� 3,17±0.84+

IFNγ (pg/ml) 24,23±9.61 26,11±9.05+++ 50,72±7.26��� 29,07±5.84+++

MCP1 (pg/ml) 28,49±4.52 25,09±6.83+++ 83,13±14.78��� 29,96±4.57+++

IL-1α (pg/ml) 19,15±4.52 18,88±6.76+++ 48,11±5.47��� 28,75±7.54� +++

IL-1β (pg/ml) 15,96±2.84 14,78±5.51+++ 31,82±5.34��� 15,54±5.07+++

IL-2 (pg/ml) 25,7±7.17 25,55±7.13+++ 56,83±7.73��� 30,44±6.85+++

IL-4 (pg/ml) 5,8±0.65 5,3±1.42+++ 12,07±2.52��� 6,04±1.93+++

IL-5 (pg/ml) 20,3±4.35 21,86±6.24 20,04±8.26 18,35±7.15

IL-6 (pg/ml) 24,87±3.7 20,53±5.38+++ 63,73±6.57��� 23,58±6.59+++

IL-7 (pg/ml) 6,97±1.41 6,88±0.94+++ 13,1±1.63��� 8,5±1.81+++

IL-10 (pg/ml) 13,4±2.45 12,81±3.3+++ 30,7±3.95��� 15,25±3.27+++

IL-12 p40 (pg/ml) 10,62±1.99 9,7±1.59++ 16,65±6.45� 13,85±4.36

IL-12 p70 (pg/ml) 15,71±2.64 14,47±2.7+++ 30,44±4.78��� 17,56±3.31+++

IL-13 (pg/ml) 13,07±4.36 14,62±6.24 12,81±8.26 11,11±7.15

IL-17A (pg/ml) 5,34±1.64 4,75±1.33+++ 12,74±2��� 7,75±3.01+++

IL18 (pg/ml) 34,91±6.38 33,08±7.12+++ 70,83±7.49��� 38,74±8.21+++

MIP-1α (pg/ml) 23,59±5.57 23,27±8.33+++ 63,86±6.22��� 32,58±6.12+++

MIP-2 (pg/ml) 1,18±0.45 1,13±0.59+++ 2,52±0.41��� 1,32±0.47+++

MIP-3α (pg/ml) 3,08±1.02 3,45±1.47 3,02±1.95 2,62±1.69

RANTES (pg/ml) 10,8±1.45 10,3±3.21+++ 24,8±3.99��� 13,87±2.68+++

Data are presented as the means ± SD.

�; p<0.05

���; p<0.001 statistically significant difference compared to the C group.

+++; p<0.001 statistically significant difference compared to the S group (n = 7).

https://doi.org/10.1371/journal.pone.0257177.t002
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MIP-3α level, and the roles of other MIP families in sepsis are controversial [46, 47]. The use

of G-CSF, the levels of which were decreased in the S group, is recommended in patients with

sepsis to increase myeloid cell functions [48]. Interestingly, while the GM-CSF level was

expected to decrease in the S group [49], it was higher than that in the controls in our study.

This change may be related to the early or late stage of sepsis. The GRO/KC, MCP1 and

RANTES levels were higher in the S group than in the C group in our study. To our knowl-

edge, no study has assessed the GRO level in individuals with sepsis, but there are many studies

on patients with various cancers [50, 51]. GRO levels have been reported to increase in individ-

uals with different types of cancer. MCP1 is a potent chemoattractant and a regulatory media-

tor involved in various inflammatory diseases [52]. RANTES also exerts a similar effect [53].

Fig 8. Relative protein expression of the proinflammatory cytokine IL-1β. A) Images of liver, B) heart, and C) lung tissues from healthy control (C), electrified

healthy (E), sepsis (S) and electrified sepsis (SE) groups. D) Representative images of IL-1β expression in the studied tissues. Values are presented as the means ± SD.

Comparisons were performed between the C group and the S group (�; p<0.05 and ���; p<0.001) and between the S group and the SE group. (+; p<0.05 and ++; p
<0.01).

https://doi.org/10.1371/journal.pone.0257177.g008
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However, the application of electrical signals prevented the formation of inflammatory mark-

ers, except IL-1α, in the E group, indicating an anti-inflammatory effect. IL-1α is produced by

activated macrophages and neutrophils, epithelial cells, and endothelial cells. It plays impor-

tant roles in regulating immune responses by binding the interleukin-1 receptor [54]. The

higher IL-1 level in the SE group than in the C group might be due to the presence of slight

bacteremia in the SE group. In our study, a low electrical signal was applied in two sessions of

forty minutes. Most likely, bacteremia would be eliminated by increasing the number of ses-

sions. This finding also explains the presence of minor inflammation in the lungs of the SE

group.

Fig 9. The relative protein expression of the proinflammatory cytokine TNF-α. A) Images of the liver, B) heart, and C) lung tissues from the healthy control (C),

electrified healthy (E), sepsis (S) and electrified sepsis (SE) groups. D) Representative pictures of TNF-α expression in the studied tissues are shown. Values are

presented as the means ± SD. Comparisons were performed between the C group and the S group (�; p<0.05 and ��; p<0.01) and between the S group and the SE group.

(+; p<0.05).

https://doi.org/10.1371/journal.pone.0257177.g009
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The relationship between sepsis and increased levels of proinflammatory cytokines such as

TNF-α and IL-1β is known as a mechanism for eliminating invading pathogens [55, 56]. On

the other hand, these immune system regulators have a role in sepsis-induced pathophysiology

by promoting excessive tissue-damaging inflammation [57]. In the present study, upregulation

of both TNF-α and IL-1β, the most extensively studied cytokines in sepsis pathophysiology,

was noted in the liver, heart and lung tissues of rats in the S group, consistent with previous

Fig 10. The relative ratio of expression of the proapoptotic protein Bax to the antiapoptotic protein Bcl-2. A) Data from the liver, B) heart, and C) lung tissues from

the healthy control (C), electrified healthy (E), sepsis (S) and electrified sepsis (SE) groups. D) Representative pictures of Bax and Bcl-2 expression in the studied tissues.

Values are presented as the means ± SD. Comparisons were performed between the C group and the S group (�; p<0.05) and between the S group and the SE group. (+;

p<0.05 and ++; p<0.01).

https://doi.org/10.1371/journal.pone.0257177.g010
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reports from other researchers [58–60]. The production of proinflammatory cytokines is

strongly related to a high level of ROS generation in subjects with sepsis [61, 62]. However, the

low electrical signal decreased the levels of these cytokines and oxidative stress parameters to

levels similar to the control group by improving sepsis-induced tissue damage. In a previous

electroacupuncture study, the sepsis-induced increase in proinflammatory cytokine levels in

the lung tissue was also decreased by electrical stimulation [63]. In addition, researchers also

found that electrical vagus nerve stimulation during sepsis reduced the level of TNF-α by acti-

vating an anti-inflammatory mechanism [64]. In addition, our newly developed low direct

electrical signal application method may also enhance an anti-inflammatory mechanism as

compensation for sepsis-induced tissue damage.

During sepsis, the rate of cellular death increases due to the activation of the mitochondrial

apoptosis pathway [65]. In the current study, we also observed an increase in the apoptotic

rate in liver and heart tissues, consistent with recent studies [59, 66]. The induction of the

pathophysiological process of sepsis may result from both an apoptosis-induced decrease in

the number of immune cells and an immunosuppressive effect of apoptotic cells [65]. Accord-

ing to previous studies, inhibition of apoptosis might be an effective strategy to protect against

sepsis-induced tissue damage [67]. Furthermore, we observed that the low electrical signal also

decreased the rate of apoptosis to increase the chance of cell survival after sepsis. Xie et al. also

reported a positive effect of electrical stimulation on the pulmonary expression of caspase-3

and Bax as a compensatory mechanism against apoptosis [63].

In summary, a low direct electrical signal application, without causing any damage to tis-

sues or organs of rats has

• an antibacterial effect either disrupting the integrity of the bacterial membrane by the elec-

trolysis of molecules or the formation of HOCl due to electrolysis of body fluids,

• an antioxidant effect by balancing disrupted oxidant/antioxidant status and decreasing oxi-

dative stress,

• an anti-inflammatory effect by reducing the bacteremia, and thus inhibiting the formation

of inflammatory markers,

• an antiapoptotic effect by adjusting the balance between proapoptotic (bax) and antiapopto-

tic (bcl-2) proteins in favor of antiapoptotic (bcl-2) proteins to reduce sepsis-dependent cell

death.

Due to its anti-bacterial, antioxidant, anti-inflammatory and anti-apoptotic effects, Dr. Bio-

lyse can offer additional benefits to the current therapies against to infectious diseases.

Supporting information

S1 Raw data. Raw data Table 1.

(XLSX)

S2 Raw data. Raw data Table 2.

(XLSX)

S3 Raw data. Raw data-Figs 4–7.

(XLSX)

S1 Raw images.

(PDF)

PLOS ONE Electrical signal treatment of sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0257177 September 9, 2021 19 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257177.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257177.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257177.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257177.s004
https://doi.org/10.1371/journal.pone.0257177


Acknowledgments

The authors would like to thank Prof. Dr. Ayşen Özel, Prof. Dr. Sevim Akyüz, Assoc. Dr. Sefa
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